Week 13
An Introduction to PIC microcontrollers

Advantages of PIC

e It is a RISC (Reduced Instruction Set
Computer) design

e Only thirty seven instructions
to remember

e Its code is extremely efficient, allowing
the PIC to run with typically less
program memory than its larger
competitors.

e It is low cost, high clock speed

Architecture

Harvard vorn-MNeumann

i

Harvard v von Maeuman Block Architecturas

g s dats
T

Harvard architecture is a newer concept than von-Neumann's. It rose out of the
need to speed up the work of a microcontroller. In Harvard architecture, Data
Access and Address Access are seperate. Thus a greater flow of data is possible
through the central processing unit. PIC16F84 uses 14 bits for instructions
which allows for all instructions to be one word instructions.

Microcontrollers with Harvard architecture are also called "RISC
microcontrollers”.

For example: PIC16F84 is a RISC microcontroller, that means that it has a
reduced set of instructions, more precisely 35 instructions (ex. Intel's and
Motorola's microcontrollers have over hundred instructions). All of these
instructions are executed in one cycle except for jump and branch instructions.

PIC16F84 usually reaches results of 2:1 in code compression and 4:1 in speed in
relation to other 8-bit microcontrollers in its class.

Harvard Architecture

* Used mostly in RISC CPUs

e Separate program bus and data bus: can
be different widths!

e For example, PICs use:
— Data memory (RAM): a small number of 8bit
registers

— Program memory (ROM): 12bit, 14bit or 16bit
wide (in EPROM, FLASH, or ROM)

Memory J e Memory
(Data) 8 CPU 12 [(Program
14
16

Von-Neumann Architecture

e Used in: 80X86 (PCs), 8051, 68HC11, etc.)
e Only one bus between CPU and memory

e RAM and program memory share the same
bus and the same memory, and so must
have the same bit width

e Bottleneck: Getting instructions interferes
with accessing RAM

Memory
CPU :;8: (Program
& Data)

Complex Instruction Set Computer (CISC)

Traditionally, CPUs are “CISC”

« Used in: 80X86, 8051, 68HC11, etc.
= Many instructions (usually > 100)

e Several addressing modes

e Usually takes more than 1 internal clock cycle
(Tcyc) to execute

e Example:

MC68HCO5: LDAA 0x55 _
2 bytes, 2 cycles

PICs and most Harvard chips are “RISC”

Reduced Instruction Set Computer (RISC)
e Used in: SPARC, ALPHA, Atmel AVR, etc.
e Few instructions (usually < 50)

* Only a few addressing modes

e Executes 1 instruction in 1 internal clock
cycle (Tcyc)
e Example:

PICI6CXXX: MOVLW Ox55 | 1100xx [01010101
1lword, 1 cycle

The PIC Family: Cores

PICs come with 1 of 4 CPU ‘cores’:

e 12bit cores with 33 instructions: 12C50x, 16C5x
e 14bit cores with 35 instructions: 12C67x,16Cxxx
e 16bit cores with 58 instructions: 17C4x,17C7xx

e ‘Enhanced’ 16bit cores with 77 instructions: 18Cxxx

The PIC Family: Speed

PICs require a clock to work.

e Can use crystals, clock oscillators, or even an RC circuit.
« Some PICs have a built in 4MHz RC clock

= Not very accurate, but requires no external components!
= Instruction speed = 1/4 clock speed (Tcyc = 4 * Tclk)

e All PICs can be run from DC to their maximum spec’d
speed:

12C50x 4MHz
12C67x 10MHz
16Cxxx 20MHz
17C4x / 17C7xxx 33MHz
18Cxxx 40MHz

The PIC Family: Program Memory

PIC program space is different for each
chip.

Some examples are:

12C508 512 12bit instructions
16C711 1024 (1k) 14bit instructions
16F877 8192 (8k) 14bit instructions
17C766 16384 (16k) 16bit instructions

The PIC Family: Program Memory

PICs have two different types of program storage:

1- EPROM (Erasable Programmable Read Only Memaory)

= Needs high voltage from a programmer to program
(—13V)

< Needs windowed chips and UV light to erase

= Note: One Time Programmable (OTP) chips are EPROM
chips, but with no window!

e PIC Examples: Any ‘C’ part: 12C50x, 17C7xx, etc.

2- FLASH

e Re-writable

Much faster to develop on!
Finite number of writes (—100k Writes)

PIC Examples: Any ‘F’ part: 16F84, 16F87x, 18FxxX
(future)

The PIC Family: Data Memory

PICs use general purpose “file registers” for RAM
(each register is 8bits for all PICs)

Some examples are:

12C508 25 Bytes RAM

16C71C 36 Bytes RAM

16F877 368 Bytes (plus 256 Bytes of nonvolatile EEPROM)
17C766 902 Bytes RAM

The PIC Family: Control Registers

PICs use a series of “special function
registers” for controlling peripherals and
PIC behaviors.

Some examples are:

STATUS Bank select bits, ALU bits (zero, borrow, carry)
INTCON Interrupt control: interrupt enables, flags, etc.

TRIS Tristate control for digital 1/0: which pins are
‘floating’

TXREG UART transmit register: the next byte to transmit

The PIC Family: Peripherals

Different PICs have different on-board
peripherals

Some common peripherals are:
— Tri-state (“floatable™) digital 1/0 pins

— Analog to Digital Converters (ADC) (8, 10 and 12bit,
50ksps)

— Serial communications: UART (RS-232C), SPI, I2C,
CAN

— Pulse Width Modulation (PWM) (10bit)
— Timers and counters (8 and 16bit)
— Watchdog timers, Brown out detect, LCD drivers

PIC Peripherals: Ports (Digital 1/0)

All PICs have digital 1/0 pins, called ‘Ports’
— the 8pin 12C508 has 1 Port with 4 digital 1/0 pins
— the 68pin 17C766 has 9 Ports with 66 digital 1/0 pins

Ports have 2 control registers

— TRISx sets whether each pin is an input or output
— PORTX sets their output bit levels

e Most pins have 25mA source/sink (directly
drives LEDs

Microcontrollers in General

et - [e chang J registar & AD iInpait
Cutpul =8~ | Trancrmilbing — AD -
Hitgranie ——— register L
. ks
o
£ Dats
Serial]*f N
wirvit it ",
register _De-la P
mem lecabon O) S
S woum
e K anom 2
.
memora T register 2
y] register 3
Addresses
I 13 | [
[mem jocation 12 | [-[[Fo——
s location 15 =1l iines CPU
Fres.mun - 7
I
-
Timer Watchdog
wnit | timer |

PIC

PI1C16F84 belongs to a class of 8-bit microcontrollers of RISC architecture.
*Program memory (FLASH)- for storing a written program.

Since memory made in FLASH technology can be programmed and cleared more
than once, it makes this microcontroller suitable for device development.

*EEPROM - data memory that needs to be saved when there is no supply.

It is usually used for storing important data that must not be lost if power supply
suddenly stops. For instance, one such data is an assigned temperature in
temperature regulators. If during a loss of power supply this data was lost, we
would have to make the adjustment once again upon return of supply. Thus our
device looses on self-reliance.

*RAM - data memory used by a program during its execution.

In RAM are stored all inter-results or temporary data during run-time.

*PORTA and PORTB are physical connections between the microcontroller and
the outside world. Port A has five, and port B eight pins.

*CENTRAL PROCESSING UNIT has a role of connective element between other
blocks in the microcontroller. It coordinates the work of other blocks and executes
the user program.

PIC

*FREE-RUN TIMER is an 8-bit register inside a microcontroller that
works independently of the program. On every fourth clock of the
oscillator it increments its value until it reaches the maximum (255), and
then it starts counting over again from zero. As we know the exact timing
between each two increments of the timer contents, timer can be used for
measuring time which is very useful with some devices.

Fres-rn
[=e ¥ 0
Dt
Ll sy
R ", I
= . Prugnm
L - CPU - TR
EEPROM FLASH
.
‘ +
| PORTA | | PorTE |

FIC16F 84 microcontroller outline

Harvard vorn-MNeumann

i

Harvard v, von Mauman Block Architeciuras

Harvard architecture is a newer concept than von-Neumann's. It rose out of the
need to speed up the work of a microcontroller. In Harvard architecture, Data
Access and Address Access are seperate. Thus a greater flow of data is possible
through the central processing unit. PIC16F84 uses 14 bits for instructions
which allows for all instructions to be one word instructions.

Microcontrollers with Harvard architecture are also called "RISC
microcontrollers”.

g s dats
T

Since PIC16F84 is a RISC microcontroller, that means that it has a reduced set
of instructions, more precisely 35 instructions . (ex. Intel's and Motorola's
microcontrollers have over hundred instructions) All of these instructions are
executed in one cycle except for jump and branch instructions.

PIC16F84 usually reaches results of 2:1 in code compression and 4:1 in speed in
relation to other 8-bit microcontrollers in its class.

Procedure

The PIC16f84 is an 18-pin 14-bit embedded micro featuring electronically
erasable programmable read-only memory (EEPROM). The essential steps
are:

Step 1: On a PC, type the program, successfully compile it and then generate
the HEX file.

Step 2: Using a PIC16F84 device programmer, upload the HEX file into the
PIC16F84. This step is often called "burning".

Step 3: Insert your PIC16F84 into your circuit, power up and verify the program
works as expected. This step is often called "dropping" the chip. If it isn't, you
must go to Step 1 and debug your program and repeat burning and dropping.

Embedded micros having EPROM versus those with EEPROM require a fourth
step - the program must be erased using ultraviolet light before starting again at
Step 1. However the PIC16F84 uses EEPROM and is what makes it popular -
the device programmer erases the program without ultraviolet light.

10

PIN Description

i e 1 B 2 L B)

Rz Rad
RA3 FAD
RAAT K QECA
HCIR PIC Q52
ws 16F84 vid
REDINT RET
RE1 RES
RB2 REBS
REZ REd

gl =l sl sl sl Jaal Jal Tl J=

Pins on PIC16F84 microcontroller have the following meaning:
Pin no.1 RA2 Second pin on port A. Has no additional function
Pin no.2 RA3 Third pin on port A. Has no additional function.
Pin no.3 RA4 Fourth pin on port A. TOCK1 which functions as a
timer is also found on this pin

Pin no.4 MCLR Reset input and Vpp programming voltage of a
microcontroller

Pin no.5 Vss Ground of power supply.

Pin no.6 RBO Zero pin on port B. Interrupt input is an additional
function.

Pin no.7 RB1 First pin on port B. No additional function.

Pin no.8 RB2 Second pin on port B. No additional function.

Pin no.9 RB3 Third pin on port B. No additional function.

Pin no.10 RB4 Fourth pin on port B. No additional function.

Pin no.11 RB5 Fifth pin on port B. No additional function.

Pin no.12 RB6 Sixth pin on port B. 'Clock’ line in program mode.

Pin no.13 RB7 Seventh pin on port B. 'Data’ line in program
mode.

Pin no.14 Vvdd Positive power supply pole.

Pin no.15 OSC2 Pin assigned for connecting with an oscillator
Pin no.16 OSC1 Pin assigned for connecting with an oscillator
Pin no.17 RA2 Second pin on port A. No additional function
Pin no.18 RAL1 First pin on port A. No additional function.

Clock Generator - Oscillator

Types of oscillators

Crystal oscillator and resistor-capacitor (RC) are the ones that are used
most frequently, these are the only ones we will mention here.
Microcontroller type with a crystal oscillator has in its designation XT, and a
microcontroller with resistor-capacitor pair has a designation RC.

Connecting the quarz oscillatar to give

clock to @ microcantroller

11

Clock Generator - Oscillator

RC Oscillator

won In applications where great time precision is not necessary

n% Diagram shows how RC
Clodk oscillator is connected with

L — PIC16F84

W :—!:
| osczoLKouT
ot

Mot This pan can ke configureg] & inpltfoutput pin
La-1o

v | gl

o

¥

Cprlal it up Hima Time

Signal of an oscillator clock after receiving the supphy of a rmicrocontroller

Clock/Instruction Cycle

Clock from the oscillator enters a microcontroller via OSC1 pin where
internal circuit of a microcontroller divides the clock into four even clocks
Q1, Q2, Q3, and Q4 which do not overlap.

These four clocks make up one instruction cycle (also called machine
cycle) during which one instruction is executed.

Execution of instruction starts by calling an instruction that is next in string.
Instruction is called from program memory on every Q1 and is written in
instruction register on Q4.

Decoding and execution of instruction are done between the next Q1 and
Q4 cycles. On the following diagram we can see the relationship between
instruction cycle and clock of the oscillator (OSC1) as well as that of
internal clocks Q1-Q4. Program counter (PC) holds information about the
address of the next instruction.

12

Continued

1G1 'Q2 @3 'Q4 1@1 'Q2'Q3 'Q4 101 'Q2 ' Q31044 |
g Sy Wy N oy Ny Ny NN Ny Ny NNy Ny Ny [N

QsC
e e
w2y " ' |
a3 | — | — | |
I |
=24 I | p— | p— I
P l!: Lo :I(T A Tra s J:
|
Fosamereh ! |
“ -
- Feerere '
1 |
| I d
L]] il
Clockiinsruction Cycle
Pipelining
TCYD TCM TCY2 TCY2 TCY4 TCYS
1. MOYLW 55 | Fetcid Execafiel
2 WMOVWF FORTE Felcih2 Exsradaz
3. CALL S8 1 Fetzhd Exgcifad
4 BEE PORTA, BIT3 |Forced NOF) Felché Fush |
5. instruction address SU8_1 Feich SUB_1 |ExscuteSuB 1
echEUE_1 +1
Al inetructions are singls cycle exept for army program branches. Thess lake two cycies sinces the ieich
nistrachons (2 "Musked™ from the pepeline winds the nevy instnucton 2 beang Tetched and then executed,

Instruction Pipetine Flow

13

CPU

Central processing unit (CPU) is the brain of a microcontroller. That part is
responsible for finding and fetching the right instruction which needs to be
executed, for decoding that instruction, and finally for its execution.

Drall s Ewas 8

rd

Cutline of the central processing unit-CPLU

ALU

Arithmetic logic unit is responsible for performing operations of adding,
subtracting, moving (left or right within a register) and logic operations.
PIC16F84 contains an 8-bit arithmetic logic unit and 8-bit work registers.

e

SN EpEg

Arithmetic-logic unit and how it works

14

Detailed Block Diagram

Doty Evpm =]
R T “ !
Program

Fite Registers (13

fdjt Program Bus

[wnstrascticn rea |
I Direct Adressing

Fansar L
TieTuar
I Cscmator
e red hawr - lirfeer
Pareie -5
Fesel
Timing
[l =Ty Tmemr
OVETDACL KOUIT TR ikl W
S AT

PAore detalled block outling of PIC1TGF 24 microconirallar

W Register

The W (Working Register) is the most important register. It is in the W register where
all the calculations and logical manipulations such as addition, subtraction, and, or
are done.

In order to move data from A to B, the data has to be move from location A to W and
then from W to location B.

v'MOVLW MOVe the Literal (a number) into the Working Register
MOVLW B’00100100’

v MOVWF MOVe the Working register to the file.

MOVWF PORTB

R0 RANSD WD RANGT RMY-T B RS RAex

[rr | rP1 [meo [TO [PD | z oc | ©

=7

[Rifa it iy
- R = Feaeialle a2 W =k s
STATUS Register L = Urimpsemandnd b _rend a5 00« 1 Vialun o power-on resed

bit 0 C (Carry) Transfer
Bit that is affected by operations of addition, subtraction and shifting.

1= transfer occured from the highest resulting bit O=transfer did not occur
C bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

bit 1 DC (Digit Carry) DC Transfer

Bit affected by operations of addition, subtraction and shifting. Unlike C bit, this bit
represents transfer from the fourth resulting place. It is set by addition when occurs carry
from bit3 to bit4, or by subtraction when occurs borrow from bit4 to bit3, or by shifting in
both direction.

1=transfer occured on the fourth bit according to the order of the result O=transfer did
not occur DC bit is affected by ADDWF, ADDLW, SUBLW, SUBWEF instructions.

bit 2 Z (Zero bit) Indication of a zero result
This bit is set when the result of an executed arithmetic or logic operation is zero.
1=result equals zero; O=result does not equal zero

bit 3 PD (Power-down bit)

Bit which is set whenever power supply is brought to a microcontroller as it starts
running, after each regular reset and after execution of instruction CLRWDT. Instruction
SLEEP resets it when microcontroller falls into low consumption/usage regime. Its
repeated setting is possible via reset or by turning the supply on, or off . Setting can be
triggered also by a signal on RBO/INT pin, change on RB port, completion of writing in
internal DATA EEPROM, and by a watchdog, too.

1=after supply has been turned on 0= executing SLEEP instruction

STATUS Register

bit 4 TO Time-out ; Watchdog overflow.

Bit is set after turning on the supply and execution of CLRWDT and SLEEP instructions.
Bit is reset when watchdog gets to the end signaling that something is not right.
1=overflow did not occur O=overflow did occur

bit6:5 RP1:RPO (Register Bank Select bits)

These two bits are upper part of the address for direct addressing. Since instructions
which address the memory directly have only seven bits, they need one more bit in
order to address all 256 bytes which is how many bytes PIC16F84 has. RP1 bit is not
used, but is left for some future expansions of this microcontroller. 01=first bank
00=zero bank

bit 7 IRP (Register Bank Select bit)
Bit whose role is to be an eighth bit for indirect addressing of internal RAM.

1=bank 2 and 3 O=bank 0 and 1 (from 0Oh to FFh)

STATUS register contains arithmetic status ALU (C, DC, Z), RESET status (TO, PD) and
bits for selecting of memory bank (IRP, RP1, RP0). Considering that selection of
memory bank is controlled through this register, it has to be present in each bank.
STATUS register can be a destination for any instruction, with any other register. If
STATUS register is a destination for instructions which affect Z, DC or C bits, then
writing to these three bits is not possible.

16

Eits TWED WDT

(1] 1.2 1 1
ool 1:4 1:2
[1:8 1:4
. 100 1iaz i: 18
OPTION register 201 184 132
. . 118 1: 428 L]
bit 0:2 PSO, PS1, PS2 (Prescaler Rate Select bit) 211 1; 288 R E:]

These three bits define prescaler rate select bit. What a prescaler is and how these bits can
affect the work of a microcontroller will be explained in section on TMRO.

bit 3 PSA (Prescaler Assignment bit)
Bit which assigns prescaler between TMRO and watchdog.
l1=prescaler is assigned to watchdog O=prescaler is assigned to a free-run timer TMRO

bit 4 TOSE (TMRO Source Edge Select bit)

If it is allowed to trigger TMRO by impulses from the pin RA4/TOCKI, this bit determines
whether this will be to the falling or rising edge of a signal.

1=falling edge O=rising edge

bit 5 TOCS (TMRO Clock Source Select bit)

This pin enables free-run timer to increment its state either from internal oscillator on every
Ya of oscillator clock, or through external impulses on RA4/TOCKI pin.

1=external impulses 0=1/4 internal clock

bit 6 INTEDG (Interrupt Edge Select bit)
If interrupt is enabled possible this bit will determine the edge at which an interrupt will be
activated on pin RBO/INT. 1=rising edge 0O=falling edge

bit 7 RBPU (PORTB Pull-up Enable bit)
This bit turns on and off internal 'pull-up’ resistors on port B.
1= "pull-up” resistors turned off 0 = "pull-up" resistors turned on

PORTA
v —
- @

CEREEE(

[@lelelolelalolo]
TRISA

®
E

Relafionship batwesn TRISA and PORTA registar

All port pins can be defined as input or output, according to the needs of a device
that's being developed. In order to define a pin as input or output pin, the right
combination of zeros and ones must be written in TRIS register. If at the
appropriate place in TRIS register a logical "1" is written, then that pin is an input
pin, and if the opposite is true, it's an output pin. Every port has its proper TRIS
register. Thus, port A has TRISA at address 85h, and port B has TRISB at address
86h.

17

Port B

PORTB has 8 pins joined to it. The appropriate register for direction of data
is TRISB at address 86h.

Four pins PORTB, RB7:RB4 can cause an interrupt which occurs when their
status changes from logical one into logical zero and opposite. Only pins
configured as input can cause this interrupt to occur

(if any RB7:RB4 pin is configured as an output, an interrupt won't be
generated at the change of status.) This interrupt option along with
internal pull-up resistors makes it easier to solve common problems we
find in practice like for instance that of matrix keyboard. If rows on the
keyboard are connected to these pins, each push on a key will then cause
an interrupt. A microcontroller will determine which key is at hand while
processing an interrupt It is not recommended to refer to port B at the
same time that interrupt is being processed.

The example shows how pins 0, 1, 2, and 3 are declared for input, and
pins 4, 5, 6, and 7 for output.

clrf 3TATUS s BankO

olrf FPORTE s PORTE=0

hsf STATUS, FPO ;EBankl

movlw 0x0F ; Defining input and output ping
movwE TRISE :Wribing to TRISE register

Port A

PORTA has 5 pins joined to it. The corresponding register for data
direction is TRISA at address 85h.
The fifth pin of port A has dual function. On that pin is also situated

an external input for timer TMRO. One of these two options is chosen

by setting or resetting the TOCS bit (TMRO Clock Source Select bit).
This pin enables the timer TMRO to increase its status either from
internal oscillator or via external impulses on RA4/TOCKI pin.

Example shows how pins O, 1, 2, 3, and 4 are declared to be input,
and pins 5, 6, and 7 to be output pins

bet 3TATUI,EFO ;EBank0O

clrf PORTR ;PORTA=0

hsf S3TATUI,RFO0 :Bankl

movly Ox1F ; Defining mput and output pms pinova
movwEf TRISA :Witing to TRISA register

18

A programming Example

+ov
1 ot
E E 2[RAZ RA4
Ri3 R0
REATOCKI 08CH
nl J— by
WOLR 0502
1 PIC f
uss 1GFEB4 e
3 A3 1m
REDINT RET
= 3o Ax
REA REG
= 11 3300 '~ LD
REZ RES
o 3o A3 m
RE3 RB4

Basic

information ; Program for initialization of port B and setting pins to status of logic one
onthe ®—— i Wersion1.0 Date: 10,10.1999, MCL:PIC16F84 Written by: John Smith
program
; Declaration and configuration of a processor
PROCESSOR 16F84
#include "p16f84inc" ; Processor title
Directive #—————— CONFG _CP_OFF & WDT_OFF & PWRTE_ON & _XT_0SC
; Start of pragram
org 000 ; Reset vector
goto Main i G0 to the beginning of Main
3 Interrupt vector
Inclusion of org 0x04 ;3 Interrupt vector
amacro * goto Main ; Interrupt routine doesn't exist
#include “bank.inc"
COomrment & - ; Beginning of the main program
Main
J BANK1 3 Select memory bank 1
Label #——— moviwe 0x00]
Instruction a——— 1 movwl TRISB j Port B pins are output
BANKD i Select memaory bank 0
Operand 1
moviw DxFF
movwi PORTB ; Set all ones to port B
Loop goto Loop 3 Program remains in the loop
end 3 Mecessary marking the end of a program

Supplying the PIC

Generally speaking, the correct voltage supply is of utmost importance for the proper
functioning of the microcontroller system. It can easily be compared to a man breathing
in the air. It is more likely that a man who is breathing in fresh air will live longer than a

man who's living in a polluted environment.

For a proper function of any microcontroller, it is necessary to provide a stable source of
supply, a sure reset when you turn it on and an oscillator. According to technical
specifications by the manufacturer of PIC microcontroller, supply voltage should move
between 2.0V to 6.0V in all versions. The simplest solution to the source of supply is
using the voltage stabilizer LM7805 which gives stable +5V on its output. One such

source is shown in the picture below.

Transformer

~ | BEOCA 000

+

220~ =t
Ci
—

1= 22yF, C2= 100xF,
3= 10pF, R= 1K

—&

T Dhid b andd ©onleganng @ e oo ol T

FPROCESSOR 1684
W bt " SR T

ST D L, waniabdes ™

Chloch Dali o Begenneney of RAM
WOYCLE : Badange 1o WAITC msiin
PR 50w

andc

o i O PAGRREMT MaEmary T

O (el 1] . Repat visboe
gale Man
O Dl - Inderrups veCtor
g hlain . No eberrupd redgting
Mnchade "hank ins” L Anpgiani flae

Man ; Begnining of the pogem
ELARNBC L
et el Part A ingialigatan
rregeed THITLA, =
[t e o
e TRIZEH N
et DicdX) L POETE indiadi T af g
ELAMETYN
rrezsder Dl
e PORTH T oo 8l leds

[
P [T . Ringsiral b3op

Eredl 1 Ervd o progrenn

__CONFIG _CP_OFF B _WOT_OFF B _PWHRTE_OM B _¥T_O5C

This example
initializes port B
as output and
sets logic one to
each pin of port
B to turn on all
LEDs.

20

Memory

PIC16F84 has two separate memory blocks, one for data and the other for program. EEPROM memory
and GPR registers in RAM memory make up a data block, and FLASH memory makes up a program
block.

Program memory

Program memory has been realized in FLASH technology which makes it possible to program a
microcontroller many times before it's installed into a device, and even after its installment if eventual
changes in program or process parameters should occur. The size of program memory is 1024 locations
with 14 bits width where locations zero and four are reserved for reset and interrupt vector.

Data memory

Data memory consists of EEPROM and RAM memories. EEPROM memory consists of 64 eight bit locations
whose contents is not lost during loosing of power supply. EEPROM is not directly addressible, but is
accessed indirectly through EEADR and EEDATA registers. As EEPROM memory usually serves for storing
important parameters (for example, of a given temperature in temperature regulators) , there is a strict
procedure for writing in EEPROM which must be followed in order to avoid accidental writing. RAM
memory for data occupies space on a memory map from location 0xOC to Ox4F which comes to 68
locations. Locations of RAM memory are also called GPR registers which is an abbreviation for General
Purpose Registers. GPR registers can be accessed regardless of which bank is selected at the moment.

SFR registers

Registers which take up first 12 locations in banks 0 and 1 are registers of specialized function assigned
with certain blocks of the microcontroller. These are called Special Function Registers.

—— | EEDATA, |
I
‘:E A e EEEROA
e] ks A
Sk el T ! IE 1 ‘!'! Il Ll1l:_'_’_'_,_,_-
H rt
v b geed B Fropedim !F!I!!f;a
A e 88 oy ~|
-
] r Dada fus
L, =
| F‘Cdl"?ﬂl- o
R e D000
Srrar ey
R TRy
LT LAl]

1FFFR 7n FFn et o
Brait s
i T
I - - -1

LETATUS mgister

Memary orgamzation of microconrollar PIC16F 84

21

Memory Banks

Beside this 'length’ division to SFR and GPR registers, memory map is also divided in 'width'
to two areas called ‘banks'. Selecting one of the banks is done via RPO and RP1 bits in
STATUS register.

Example:
bcf STATUS, RPO

Instruction BCF clears bit RPO (RPO=0) in STATUS register and thus sets up bank 0.
bsf STATUS, RPO
Instruction BSF sets the bit RPO (RPO=1) in STATUS register and thus sets up bank1.

Usually, groups of instructions that are often in use, are connected into one unit which can
easily be recalled in a program, and whose name has a clear meaning, so called Macros.
With their use, selection between two banks becomes more clear and the program itself
more legible.)
BANKO macro .ﬂ?
Bcf STATUS, RPO ;Select memory bank 0 { Locations OCh - 4Fh are general
Endm purpose registers (GPR) which are
} used as RAM memory. When locations
8Ch - CFh in Bank 1 are accessed, we
BANK1 macro actually access the exact same
Bsf STATUS, RPO ;Select memory bank 1 locations in Bank 0. In other words ,
Endm whenever you wish to access one of
the GPR registers, there is no need to
worry about which bank we are in!

Program Counter

Program counter (PC) is a 13 bit register that contains the address of
the instruction being executed. By its incrementing or change (ex. in
case of jumps) microcontroller executes program instructions step-by-
step.

Stack

PIC16F84 has a 13-bit stack with 8 levels, or in other words, a group of
8 memory locations of 13 -bits width with special function. Its basic
role is to keep the value of program counter after a jump from the
main program to an address of a subprogram . In order for a program
to know how to go back to the point where it started from, it has to
return the value of a program counter from a stack. When moving from
a program to a subprogram, program counter is being pushed onto a
stack (example of this is CALL instruction). When executing
instructions such as RETURN, RETLW or RETFIE which were executed
at the end of a subprogram, program counter was taken from a stack
so that program could continue where was stopped before it was
interrupted. These operations of placing on and taking off from a
program counter stack are called PUSH and POP, and are named
according similar instructions on some bigger microcontrollers.

22

System Programming

In order to program a program memory, microcontroller
must be set to special working mode by bringing up
MCLR pin to 13.5V, and supply voltage Vdd has to be
stabilized between 4.5V to 5.5V.

Program memory can be programmed serially using two
‘data/clock’ pins which must previously be separated
from device lines, so that errors wouldn't come up
during programming.

Addressing Modes

Direct Addressing

Direct Addressing is done through a 9-bit address. This address is obtained by connecting
7th bit of direct address of an instruction with two bits (RP1, RPO) from STATUS register as
is shown on the following picture. Any access to SFR registers can be an example of direct

addressing.

Bsf STATUS, RPO ;Bankl
movlw OxFF ;Ww=0xFF

movwf TRISA ;address of TRISA register is taken from

;instruction movwf
Iy @rsdd Boh
DS of
STATUES
Ry Servan Bats frorn nalrections
RP1 RF2
(T + (I 111117
- v
Selkped
[=F 00 oo L m
= ‘ﬂthﬂ'bf;\:l;‘:- -~ E—
“ oc 7
&F /
-
%,
F Fa ..r"’..-ﬁ

!
H

23

Addressing Modes

Direct Addressing
Indirect unlike direct addressing does not take an address from an instruction but
makes it with the help of IRP bit of STATUS and FSR registers. Addressed location is
accessed via INDF register which in fact holds the address indicated by a FSR. In other
words, any instruction which uses INDF as its register in reality accesses data
indicated by a FSR register. .)
el D OF

STATUS

rogisher
Let's say, for instance, that one general .
purpose register (GPR) at address OFh P ! o
contains a value of 20. By writing a value 1 + [T T TTTT]es=
of OFh in FSR register we will get a i :
register indicator at address OFh, and by
reading from INDF register, we will get a
value of 20, which means that we have Swbecied
read from the first register its value s
without accessing it directly (but via FSR
and INDF). It appears that this type of St lncanen -
addressing does not have any advantages L
over direct addressing, but certain needs
do exist during programming which can
be solved smoothly only through indirect
addressing. i

e

Bardll Biarnic|

nchrect adangssang

Addressing Modes

Reading data from INDF register when the contents of FSR register is
equal to zero returns the value of zero, and writing to it results in NOP
operation (no operation).

The following is an example of erasing a part of RAM memory (16
locations)

Mowln 0x0C sinitialization of starting address
Mowvwt F3ER ;F3F indicates address 0x0C

LOJF clrf INDF INDF = 0O
inct F3R raddress = initial address + 1
btfs=s F3ER, 4 ;are all locations erased
goto loop srno, go through a loop again

CONTINUE
H : yes, continue with program

EEPROM Data Memory

PIC16F84 has 64 bytes of EEPROM memory locations on addresses from 00h to 63h
those can be written to or read from. The most important characteristic of this memory is
that it does not loose its contents during power supply turned off. Data can be retained
in EEPROM without power supply for up to 40 years (as manufacturer of PIC16F84
microcontroller states), and up to 10000 cycles of writing can be executed.

In practice, EEPROM memory is used for storing important data or some process
parameters.

One such parameter is a given temperature, assigned when setting up a temperature
regulator to some process. If that data wasn't retained, it would be necessary to adjust
a given temperature after each loss of supply. Since this is very impractical (and even
dangerous), manufacturers of microcontrollers have began installing one smaller type of
EEPROM memory.

EEPROM memory is placed in a special memory space and can be accessed through
special registers. These registers are:

= EEDATA at address 08h, which holds read data or that to be written.

= EEADR at address 09h, which contains an address of EEPROM location being accessed.
< EECON1 at address 88h, which contains control bits.

= EECONZ2 at address 89h. This register does not exist physically and serves to protect
EEPROM from accidental writing.

EECONL1 register at address 88h is a control register with five implemented bits.
Bits 5, 6 and 7 are not used, and by reading always are zero.

U-0 U-0 U-0 Fui-1 Funy-1 FAN-x RS-0 RS-
— | - | = | eeF [wrerr | wREM | wR ro |
bit 7 hit O
EECONL1 Register Legend:
R = Readable bit W = Writable bit
U= Unimplemented bit, read as '0° -n=Yalue at POR reset

bit 0 RD (Read Control bit)
Setting this bit initializes transfer of data from address defined in EEADR to EEDATA

register. Since time is not as essential in reading data as in writing, data from EEDATA can

already be used further in the next instruction.
1=initializes reading O=does not initialize reading

bit 1 WR (Write Control bit)

Setting of this bit initializes writing data from EEDATA register to the address specified
trough EEADR register.

1=initializes writing O=does not initialize writing

bit 2 WREN (EEPROM Write Enable bit) Enables writing to EEPROM
If this bit was not set, microcontroller would not allow writing to EEPROM.
1=writing allowed O=writing disallowed

bit 3 WRERR (Write EEPROM Error Flag) Error during writing to EEPROM

This bit was set only in cases when writing to EEPROM had been interrupted by a reset
signal or by running out of time in watchdog timer (if it's activated).

1=error occurred O=error did not occur

bit 4 EEIF (EEPROM Write Operation Interrupt Flag bit) Bit used to inform that writing data

to EEPROM has ended.

When writing has terminated, this bit would be set automatically. Programmer must clear
EEIF bit in his program in order to detect new termination of writing.

1=writing terminated O=writing not terminated yet, or has not started

25

Reading From EEPROM

Setting the RD bit initializes transfer of data from address found in EEADR
register to EEDATA register. As in reading data we don't need so much time
as in writing, data taken over from EEDATA register can already be used
further in the next instruction.

hef ITATUZ, RPO shankd, hecause EEALADE is at 0Sh
mow 1l Ox00 raddress of location being read
mowvwEt EELDE saddress transferred to EEADER
hst ITATUZ, RPO shankl because EECCHN1 is at S5h
b=t EECON1, RD sreading from EEPRCOH

hef STATUIZ, RPO :Bank0 because EEDATL is at 08h
mowvEt EEDATA, W ;W «<—— EEDATR

After the last program instruction, contents from an EEPROM address zero
can be found in working register w.

Instruction Set

Transfer of data in a microcontroller is done between work (W) register and an 'f*
register that represents any location in internal RAM (regardless whether those
are special or general purpose registers).

Some instructions provide for a constant being written in W register (MOVLW is short

for MOVe Literal to W), and for data to be copied from W register onto RAM and data
from RAM to be copied onto W register (or on the same RAM location, at which point
only the status of Z flag changes).

Instruction CLRF writes constant O in 'f ' register, and CLRW writes constant O in
register W.

SWAPF instruction exchanges places of the 4-bit nibbles field inside a register.

Of all arithmetic operations, PIC like most microcontrollers supports only subtraction

and addition. Flags C, DC and Z are set depending on a result of addition or

subtraction. Subtraction is performed like addition of a negative value, C flag is
inverse following a subtraction. In other words, it is set if operation result is
positive, and reset if larger number was subtracted from a smaller one.

Logic unit of PIC has capability of performing operations AND, OR, EX-OR,
complementing (COMF) and rotation (RLF and RRF).

Instructions which rotate the register contents move bits inside a register through flag

C by one space to the left (toward bit 7), or to the right (toward bit 0). Bit which
"comes out" of a register is written in flag C, and value of C flag is written in a bit on
the "opposite side" of the register.

26

Instruction Set

Instructions BCF and BSF do setting or cleaning of one bit anywhere in the memory. Even though
this seems like a simple operation, it is executed so that CPU first reads the whole byte, changes
one bit in it and then writes in the entire byte at the same place

Instruction Execution Period

All instructions are executed in one cycle except for conditional branch
instructions if condition was true, or if the contents of program counter
was changed by some instruction.

In that case, execution requires two instruction cycles, and the second
cycle is executed as NOP (No Operation). Four oscillator clocks make
up one instruction cycle.

If we are using an oscillator with 4MHz frequency, the normal time for
executing an instruction is 1 ps, and in case of conditional branching,
execution period is 2 ps.

Instruction Set

PIC16F84 INSTRUCTION SET

Literal and control instructions:

Mnemonic Description Function
Arddlw k Add literal to W K+ =W
andlw k AMD literal and Wy KARDL W =W
call kK Call subroutine PC+1=T0S, k =PC
clrwdt Clear watchdog timer 0 —WOT (and prescaler if assigned)
goto k oto address (kis nine bits) k= PC {4 hits)
il k Incl. OR literal and ¥ K OR. W= W
oyl k iove Literal to W k=W
option Load OPTION register W — OPTION Register
retfie Feturn frorm Interrupt TOS = FC, 1 = GIE
rethw k Return with literal in YW k=W, TOS — PC
return Return from subroutine TOS = PC
sleep G0 into Standby Mode 0 — WDT, stop oscillator
Sublw k Subtract W from literal KO- W = W
tris T Configure port f idewnward compat. instr.) W — /0 control reg £
Wl [Exclusive OR literal and W K HOR. W = W

Key:

Field

Bit address within an &-bit file register

Destination select; d=0
d=1

Store resultin '
Stare resultin file register f.
Defaultis d=1

Registerfile address (0x00 to 0xFF)

Literal field, constant data or label

Working register (aceumulaton)

27

Byte-oriented instructions:

Instruction Set

Mnemonic Description Function
addwf fid Add ¥y and T Witf = d
andwr fd AMD WY and T W AND. T — d
clrf f Clearf 0—=f
cln Clearyy 0 —
comf fid Carmplernent { MOT f = d
decl d Decrement f f-—=d
decfsz fd Decrementf, skip if zero f-1 —=d skipif0
incf f.d Increrment f+1 =d
incfsz fd Incrementf, skip if zero f+1 = dskipif0
iorwf fd Inclusive OR W and f WOOR T = d
mowf fd hove f—=d
[f Move Wto T W T
nop Mo operation
register f
Hf .d Rotate leftf 1 ‘ [| - | 7 0 | -
-
register

1t fd Rotate right f - ¢ =7] 1

-+
subwt fd Subtractyy fram 1 - —=d
swrapf fid Swap halves filid) e 47 = d
HPw .d Exclusive OR W and WOHOR f —d

Bit-orienl;ad instructions:

Instruction Set

M Description Function
hef fh Bit clearf 0 — fib)
hsf fh Bit get f 1 = 1l
hifsc b Bit test, skip next instruction if clear skipif fiky=10
hifzs fh Bit test, skip next instruction if set skip if fihy=1
Kew:
Field De=scription
b Bit address within an 8-hit file registar
d Destination select; d=10 Store resultind
d=1 Store resultin file register f.
Defaultis d=1.
f Register file address (0x00 to 0xFF)
k Literal field, constant data or lahel
W Warking register {accumulatar)

28

HEADERS4.ASM for 16F84. This sets PORTA as an INPUT (NB |

means input) and PORTB as an OUTPUT
(NB 0 means output). The OPTION
register is st 10 /256 to give timing pulses
of 1/32 of a second.

1 second and 0.5 second delays are
included in the subroutine section.

Example Program

‘EQUATES SECTION]
TMRO EQU I smeans TMRO is file 1. Bi
STATUS EQU 3 imicans STATUS is file 3. o
PORTA EQU 5 imicans PORTA is file 5
PORTE EQU 6 means PORTB is Mile 6. o
ZEROBIT EQU 2 cans ZEROBIT is bit 2.
COUNT EQU OCH imeans COUNT is file 0C, I
1a register 10 count events. ¥
Srrrrssssrrrrees e . i
LIST P=16F84 ;we are using the 16F84. 1S
ORG L] ithe start address in memory is 0
GOTO START goto stan! m
E 1 Ve :
seeee . . . e PAT =
SUBROUTINE SECTION, i i =
1 second delay. A ~
DELAYI CLRF TMRO START TMRO. fife 1 1
LOOPA MONVF TMRO,W JREAD TMRO INTO W, ! v o J
suBLw 32 TIME - 32
BTFSS STATUSZERODIT Check TIME-W =0
GOTO LOOPA Time is nod = 32
RETLW © Tume is 32, return. - -
0.8 second delay.
DELAYPS CLRF TMRO START TMED.
LOOPB MOVF TMRO,W WREAD TMRO INTO W
SUBLW 16 STIME - 16
DTFSS STATUSZEROBIT Check TIME-W =0
GOTO LOOrB Time is not = 16,
RETLW 0 Time is 16, return
(CONFIGURATION SECTION
START BSF STATUS,S iTurns to Bankl.
MOVLW B'00011111" ;5bits of PORTA are /P
TRIS PORTA
MOVLW B 00000000
TRIS PORTB JPORTE is OUTPUT
MOVLW B'0O0000111° iPrescaler is /256
OPTION iTIMER is 1/32 sccs,
BCF STATUS,S ;Return to Bank0.
CLRF PORTA iClears Porta,
CLRF PORTE iClears PonB.

R T PP P T P TP T T TP

Program starts now.

b T T T T T T

:Program starts now:.

BEGIN

END

BSF PORTB,0 JTurn ON B0,
CALL DELAYPS sWait 0.5 seconds
BCF PORTR,0 ;Turn OFF B0,
CALL DELAYPS sWait 0.5 seconds
GOTO BEGIN Repeat

JYOU MUST END!!

‘Program starts now.
BEGIN BSF
BCF
CALL
BCF
BSF
CALL
GOTO
END

PORTE.0
PORTR,!
DELAYPS
PORTB,0
PORTH,1
DELAYPS
BEGIN

iTurn ON BO.
Turn OFF B

‘ait 0.5 seconds
JTurn OFF BO.
;Turn ON BI.
‘Wait 0.5 scconds
‘Repeat

29

Conditional Jump Example

BEGIN BTFSC PORTA,O (test bit 0 in file PORTA skip if clear)
GOTO BEGIN
BSF PORTB,0

SWOFE BTFSS PORTA,O
GOTO SWOFF
BCF PORTER,0
GOTO BEGIN

Directing a Program Flow

Instructions GOTO, CALL and RETURN are executed the same

way as on all other microcontrollers, only stack is independent Main molay 2

of internal RAM and limited to eight levels. call Lookup
'RETLW k' instruction is identical with RETURN instruction, Lookup addwf PCL,
except that before coming back from a subprogram a constant retlw k
defined by instruction operand is written in W register. This retlw ki1
instruction enables us to design easily the Look-up tables (lists). retlw k2
Mostly we use them by determining data position on our table .

adding it to the address at which the table begins, and then we .

read data from that location (which is usually found in program retllw kn

memory).

Table can be formed as a subprogram which consists of a series of 'RETLW k' instructions,
where 'k' constants are members of the table.

We write the position of a member of our table in W register, and using CALL instruction we
call a subprogram which creates the table. First subprogram line ADDWF PCL, f adds the
position of a W register member to the starting address of our table, found in PCL register,
and so we get the real data address in program memory. When returning from a
subprogram we will have in W register the contents of an addressed table member.

Conditional jumps are synthesized into two instructions: BTFSC and BTFSS. Depending on a
bit status in 'f’' register that is being tested, instructions skip or don't skip over the next
program instruction

30

Interrupts

Interrupts are a mechanism of a microcontroller which enables it to
respond to some events at the moment when they occur, regardless of
what microcontroller is doing at the time. This is a very important part,
because it provides connection between a microcontroller and environment
which surrounds it. Generally, each interrupt changes the program flow,
interrupts it and after executing an interrupt subprogram (interrupt
routine) it continues from that same point on.

PG OEFSL

| [

L] . ———— Poant at which
Z i AT

w | i

"" Frograen tru-:ur:l
1 | i

oo | -

W= |

e &

el Mo puvwwilide: s en of o idiew s opdl el s § afTrad n e rrsin o o e

INTCON Register

RM-0 RAWD RW-0 RAW-0 R0 RAWD RMW-D RAND

| cie | ese [1oe [e |ree | toF | i | e |

T

el
= Feadable b8 W o= Wiiabls b

= Unimplemented kit rend a5 7' - n = Value af power-on reset

bit 0 RBIF (RB Port Change Interrupt Flag bit) Bit which informs about changes on
pins 4, 5, 6 and 7 of port B.

1=at least one pin has changed its status 0=no change occured on any of the
pins

bit 1 INTF (INT External Interrupt Flag bit) External interrupt occured.
1=interrupt occurred O=interrupt did not occur

If a rising or falling edge was detected on pin RBO/INT, (which is defined with bit
INTEDG in OPTION register), bit INTF is set. Bit must be cleared in interrupt
subprogram in order to detect the next interrupt.

bit 2 TOIF (TMRO Overflow Interrupt Flag bit) Overflow of counter TMRO.

1= counter changed its status from FFh to 00h O=overflow did not occur
Bit must be cleared in program in order for an interrupt to be detected.

31

Interrupts

bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts to occur at the change of
status of pins 4, 5, 6, and 7 of port B.

1= enables interrupts at the change of status O=interrupts disabled at the change of status
If RBIE and RBIF were simultaneously set, an interrupt would occur.

bit 4 INTE (INT External Interrupt Enable bit) Bit which enables external interrupt from pin
RBO/INT.

1=external interrupt enabled O=external interrupt disabled

If INTE and INTF were set simultaneously, an interrupt would occur.

bit 5 TOIE (TMRO Overflow Interrupt Enable bit) Bit which enables interrupts during counter
TMRO overflow.

1=interrupt enabled O=interrupt disabled

If TOIE and TOIF were set simultaneously, interrupt would occur.

Bit 6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an interrupt at the
end of a writing routine to EEPROM

1=interrupt enabled O=interrupt disabled

If EEIE and EEIF (which is in EECONL1 register) were set simultaneously , an interrupt would
occur.

Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1=all interrupts are enabled 0O=all interrupts are disabled

Interrupts

The PIC16F244A has 4 sources of interrupt:

External interrupt RBOANT pin

TMRED overflow interrupt

FORTB change interrupts (pins RB7-RB4)
Data EEFROM write complete interrupt

32

Interrupts

*External interrupt on RBO/INT pin is edge triggered: either rising if INTEDG bit
(OPTION_REG<6>) is set, or falling if INTEDG bit is clear.

*When a valid edge appears on the RBO/INT pin, the INTF bit (INTCON<1>) is set.
This interrupt can be disabled by clearing control bit INTE (INTCON<4>).

*An overflow (FFh — 00h) in TMRO will set flag bit TOIF (INTCON<2>). The
interrupt can be enabled/disabled by setting/clearing enable bit TOIE (INTCON<5>)

*An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt
can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<3>)

*At the completion of a data EEPROM write cycle, flag bit EEIF (EECON1<4>)
will be set. The interrupt can be enabled/disabled by setting/clearing enable bit
EEIE (INTCON<6>)

The Watchdog Timer is a free running On-Chip RC Oscillator which does not require
any external components. This RC oscillator is separate from the RC oscillator of the
OSC1/CLKIN pin. That means that the WDT will run even if the clock on the
OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example,

by execution of a SLEEP instruction. During normal operation, a WDT time-out
generates a device RESET. If the device is in SLEEP mode, a WDT wake-up causes
the device to wake-up and continue with normal operation. The WDT can be
permanently disabled by programming configuration bit WDTE as a '0'

Interrupts

bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts to occur at the change of
status of pins 4, 5, 6, and 7 of port B.

1= enables interrupts at the change of status O=interrupts disabled at the change of status
If RBIE and RBIF were simultaneously set, an interrupt would occur.

bit 4 INTE (INT External Interrupt Enable bit) Bit which enables external interrupt from pin
RBO/INT.

1=external interrupt enabled O=external interrupt disabled

If INTE and INTF were set simultaneously, an interrupt would occur.

bit 5 TOIE (TMRO Overflow Interrupt Enable bit) Bit which enables interrupts during counter
TMRO overflow.

1=interrupt enabled O=interrupt disabled

If TOIE and TOIF were set simultaneously, interrupt would occur.

Bit 6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an interrupt at the
end of a writing routine to EEPROM

1=interrupt enabled O=interrupt disabled

If EEIE and EEIF (which is in EECONL1 register) were set simultaneously , an interrupt would
occur.

Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1=all interrupts are enabled 0O=all interrupts are disabled

33

Interrupts

Generally speaking, each interrupt source has two bits joined to it. One enables
interrupts, and the other detects when interrupts occur. There is one common bit
called GIE which can be used to disallow or enable all interrupts simultaneously.

This bit is very useful when writing a program because it allows for all interrupts to be
disabled for a period of time, so that execution of some important part of a program
would not be interrupted. When instruction which resets GIE bit was executed (GIE=0,
all interrupts disallowed), any interrupt that remained unsolved should be ignored

*The interrupt control register (INTCON) records individual interrupt requests in flag
bits. It also contains the individual and global interrupt enable bits.

*The global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked
interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled
through their corresponding enable bits in INTCON register. Bit GIE is cleared on
RESET.

*The RBO/INT pin interrupt, the RB port change interrupt and the TMRO overflow
interrupt flags are contained in the INTCON register.

*When an interrupt is responded to, the GIE bit is cleared to disable any further
interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h

Interrupts

External interrupt on RBO/INT pin of microcontroller

External interrupt on RBO/INT pin is triggered by rising signal edge (if bit INTEDG=1 in
OPTION<6> register), or falling edge (if INTEDG=0). When correct signal appears on INT
pin, INTF bit is set in INTCON register. INTF bit (INTCON<1>) must be reset in interrupt
routine, so that interrupt wouldn't occur again while going back to the main program. This
is an important part of the program which programmer must not forget, or program will
constantly go into interrupt routine. Interrupt can be turned off by resetting INTE control bit
(INTCON<4>).

Interrupt during a TMRO counter overflow

Overflow of TMRO counter (from FFh to 00h) will set TOIF (INTCON<2>) bit. This is very
important interrupt because many real problems can be solved using this interrupt. One of
the examples is time measurement. If we know how much time counter needs in order to
complete one cycle from 00h to FFh, then a number of interrupts multiplied by that amount
of time will yield the total of elapsed time. In interrupt routine some variable would be
incremented in RAM memory, value of that variable multiplied by the amount of time the
counter needs to count through a whole cycle, would yield total elapsed time. Interrupt can
be turned on/off by setting/resetting TOIE (INTCON<5>) bit.

Interrupt during a change on pins 4, 5, 6 and 7 of port B

Change of input signal on PORTB <7:4> sets RBIF (INTCON<O0>) bit. Four pins RB7, RB6,
RB5 and RB4 of port B, can trigger an interrupt which occurs when status on them changes
from logic one to logic zero, or vice versa. For pins to be sensitive to this change, they must
be defined as input. If any one of them is defined as output, interrupt will not be generated
at the change of status. If they are defined as input, their current state is compared to the
old value which was stored at the last reading from port B. Interrupt can be turned on/off
by setting/resetting RBIE bit in INTCON register.

34

Interrupts

Interrupt upon finishing write-subroutine to EEPROM

This interrupt is of practical nature only. Since writing to one EEPROM location takes
about 10ms (which is a long time in the notion of a microcontroller), it doesn't pay
off to a microcontroller to wait for writing to end. Thus interrupt mechanism is added
which allows the microcontroller to continue executing the main program, while
writing in EEPROM is being done in the background. When writing is completed,
interrupt informs the microcontroller that writing has ended. EEIF bit, through which
this informing is done, is found in EECONL1 register. Occurrence of an interrupt can be
disabled by resetting the EEIE bit in INTCON register.

Interrupt initialization
In order to use an interrupt mechanism of a microcontroller, some preparatory tasks
need to be performed. These procedures are in short called "initialization". By
initialization we define to what interrupts the microcontroller will respond, and which
ones it will ignore. If we do not set the bit that allows a certain interrupt, program
will not execute an interrupt subprogram. Through this we can obtain control over
interrupt occurrence, which is very useful.

clrf INTCON

all interrupts disabled

wowlw B'O0010000! ; external interrupt only is enasbhled

hsf INTCCN, GIE

org ISR ADDR

btfsc INTCCH, GIE
goto ISR ADR

PUSH

btfsc INTCCH, REIF
goto ISR PORTE
btfsc INTCCH, INTF
goto ISR RED

btfsc INTCCM, TOIF
goto ISR THRO
BANEL

Btfsc EECON1, EEIF
goto ISR _EEPROM
BANED

ISE_FPORTE

goto END ISR
ISR REBO

goto END ISR
ISE_THRO

goto END ISR
ISE_EEFPRCH

goto END ISR
END ISR
POFP

RETFIE

; ISE_ADDRE is interrupt routine address
;GIE bit turned off?

;no, go bhack to the heginning

;keep the contents of important registers
;change on pins 4, 5, 6 and 7 of port B?
;jump to that section

;external interrupt occured?

;jump to that part

joverflow of tiwmer TMRO?

;jump to that section

;Bankl because of EECCHN1

;writing to EEPROM cowmpleted?

;jump to that section

; BankO

;section of code which is processed by an
;interrupt ?

sjump to the exit of an interrupt

;section of code processing an interrupt?
Fjump to exit of an interrupt.

;section of code processing an interrupt
sjump to the exit of an interrupt

;section of code which processes an interrupt
;jump to an exit from an interrupt.

;bringing hack the contents of important

;registers
;return and setting of GIE kit

occurrence of interrupts allowed

EXAMPLE

o
e

‘

Return from interrupt routine can
be accomplished with instructions
RETURN, RETLW and RETFIE. Itis
recommended that instruction
RETFIE be used because that
instruction is the only one which
automatically sets the GIE bit
which allows new interrupts to
occur.

35

Interrupts

EEIE EEIF
s D

TOIE TOIF
G

:F'EEE,/@/ﬂ.

INTE INTF

SV

INTERRLIFT

Simplified autling of PIC16F 84 micracantraller intermupt

Interrupts which remained unsolved and were ignored, are processed when GIE bit
(GIE=1, all interrupts allowed) would be cleared. When interrupt was answered, GIE bit
was cleared so that any additional interrupts would be disabled, return address was
pushed onto stack and address 0004h was written in program counter - only after this
does replying to an interrupt begin! After interrupt is processed, bit whose setting
caused an interrupt must be cleared, or interrupt routine would automatically be
processed over again during a return to the main program.

Interrupts

Felowang
inglruction afer an
ntesupl checks
ot 1w value of
with AGEIar W

Iratruclion o, | ——— vhluel

Trstuction po, N 1 ——— s W= 7

Befom the intarrupt
nocured, working
ragislar W had (e

v

Iddiragd
-
Retwm to
mawn
proquanm

NE'_l |_‘_ DA

Itamagt
S
where inlémupl
processing has
changad work
ragislar W o 1e Y

One of the possible cages of errors [saving was not done when gelng

to a subprogram of an interrupt

PIC16F84 does not have instructions like PUSH and POP, and
they have to be programmed.

36

Programming Example

MSGTXT ADDWF PCL, f ; offset added to PCL
RETLW $48 ; 'H'

RETLW $65 ; 'e'

RETLW $6C ; 'I

RETLW $6C ; 'I

RETLW $6F ; ‘o'

RETLW $20 ;"'

RETLW $57 ;'W'

RETLW $6F ; 'o'

RETLW $72;'r'

RETLW $6C ; I

RETLW $64 ; 'd'

RETLW $21 ;"'

RETLW $0D ; carriage return
RETLW $0A ; line feed
RETLW $00 ; indicates end

OUTMSG MOVWF MSGPTR; put 'W' into message pointer
MSGLOOP MOVF MSGPTR, W ; put the offset in 'W'
CALL MSGTXT ; returns ASCII character in 'W*
ADDLW 0 ; sets the zero flag if W =0
BTFSC STATUS, Z ; skip if zero bit not set
RETURN ; finished if W =0
CALL OUTCH ; output the character
INCF MSGPTR, f; point at next
GOTO MSGLOOP ; more characters

37

